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A hyperbolic two-phase flow model involving five partial differential equations is
constructed for liquid–gas interface modelling. The model is able to deal with
interfaces of simple contact where normal velocity and pressure are continuous
as well as transition fronts where heat and mass transfer occur, involving pressure
and velocity jumps. These fronts correspond to extra waves in the system. The model
involves two temperatures and entropies but a single pressure and a single velocity. The
closure is achieved by two equations of state that reproduce the phase diagram when
equilibrium is reached. Relaxation toward equilibrium is achieved by temperature
and chemical potential relaxation terms whose kinetics is considered infinitely fast
at specific locations only, typically at evaporation fronts. Thus, metastable states are
involved for locations far from these fronts. Computational results are compared to
the experimental ones. Computed and measured front speeds are of the same order of
magnitude and the same tendency of increasing front speed with initial temperature
is reported. Moreover, the limit case of evaporation fronts propagating in highly
metastable liquids with the Chapman–Jouguet speed is recovered as an expansion
wave of the present model in the limit of stiff thermal and chemical relaxation.

1. Introduction
When a liquid initially in thermodynamic equilibrium is subject to strong rarefaction

waves, it may reach a metastable state where the temperature is higher than the
saturated one at the final pressure of the expanded state. Then the superheated
liquid releases its metastable energy (stored as internal energy) very quickly, even
explosively, producing either pure vapour, if the liquid is retrograde (Chaves 1984;
Thompson et al. 1987; Kurschat, Chaves & Meier 1992), or a liquid-vapour mixture
at high velocity. This phenomenon is often called cavitation. Such situations appear
frequently in nature and in many industrial applications, such as liquid flows around
hypervelocity projectiles and submarine airfoils, or inside nozzles such as fuel
injector systems. Cavitation in these systems always produces strong disturbances.
In most applications, cavitation appears as a multi-dimensional phenomenon due to
geometrical effects. This multi-dimensional character complicates both experiments
and theoretical approaches.

† Author to whom correspondence should be addressed: richard.saurel@polytech.univ-mrs.fr
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Figure 1. Simplified experimental setup of the expansion tube used by Simoes-Moreira &
Shepherd (1999) and associated waves.
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Figure 2. Liquid thermodynamic path associated to the expansion wave producing
a superheated liquid.

By using one-dimensional expansion tubes several authors (Grolmes & Fauske
1974; Chaves 1984; Thompson et al. 1987; Hill & Sturtevant 1990; Frost, Lee &
Ciccarelli 1991; Kurschat et al. 1992; Simoes-Moreira & Shepherd 1999; Reinke &
Yadigaroglu 2001) have succeeded of isolating the main phenomenon that we propose
to summarize hereafter. These experiments consisted of connecting a vertical tube
filled with a liquid in thermodynamic equilibrium at atmospheric pressure (or higher)
to a very low-pressure chamber (figure 1). As soon as the membrane between the
liquid and the vacuum chamber is ruptured, rarefaction waves propagate through the
liquid producing a superheated liquid (figure 2).

Then a subsonic phase-transition front propagates through the superheated liquid
producing a high-velocity liquid-vapour mixture in thermodynamic equilibrium
moving towards the low-pressure chamber. The front velocity is approximately 1 m s−1

while the ejected mixture velocity is of the order of 100 m s−1.
These experimental observations indicate that both liquid and vapour compressibi-

lities have to be considered. They also report the presence of an acoustic wave (expan-
sion wave) preceding the evaporation front, itself preceding a contact discontinuity
and a compression wave as represented in the figure 1. The corresponding wave pat-
tern is shown in the (x, t) diagram of figure 3. Expansion effects in industrial systems
are often due to geometrical effects, for example in nozzles where cavitation appears
at locations where the pressure is very low and the liquid superheated (figure 4).

The aim of the present paper is to develop a model able to deal with metastable
states and evaporation front dynamics, as well as the other waves shown in figure 3.
The model must also be able to deal with interfaces separating a liquid and a non-
condensable gas; mass transfer occurs only under specific thermodynamic conditions
that do not necessarily correspond to the local thermodynamic state at the interfaces.
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Figure 3. A typical wave pattern of cavitating systems.
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Figure 4. Cavitating flow in a nozzle. Cavitation pockets appear in the divergent part of the
nozzle where geometrical expansion produces metastable liquid state.

Thus the model must be able to deal with interfaces of simple contact as well as
evaporating interfaces.

The paper is organized as follows. Existing model are reviewed and a critical
analysis is given in § 2, together with justification of the choice for temperature
non-equilibrium model. In § 3, starting from the non-equilibrium model of Baer &
Nunziato (1986) an asymptotic analysis is carried out in order to derive a single
velocity and pressure two-phase flow model including heat transfers. This model
can solve interface problems with non-miscible fluids. Its thermodynamic closure is
examined in § 4. Mass transfer modelling is addressed in § 5. Closure relations are
obtained by examining the entropy production in each phase and in the mixture.
The basic ingredients needed to solve the hyperbolic system with heat and mass
transfer are reported in § 6. Numerical results are reported in § 7. The limit case
of interfaces separating pure non-miscible fluids is examined. Then mass transfer is
introduced adding extra waves into the system. Computed results are compared to
the experimental ones of Simoes-Moreira & Shepherd (1999). A new interpretation of
evaporation front dynamics in highly metastable liquids (Chaves 1984) is proposed.
Such fronts correspond to expansion waves of the limit system with stiff thermal and
chemical relaxation.

2. Review of existing models
Essentially two classes of models are available in the literature. The first class

corresponds to pressure and temperature equilibrium models, the second class being
related to temperature non-equilibrium models.

2.1. Pressure and temperature equilibrium models

At least four models belong to this category, with increasing complexity:
(i) The mixture Euler equations with a cubic equation of state (EOS). A prototype

of such an EOS is the van der Waals one. With such models a loss of hyperbolicity
occurs in the spinodal region. In other words, the squared sound speed may become
negative and wave propagation has no physical meaning (Menikoff & Plohr 1989).
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(ii) The mixture Euler equations can also be used with a tabular EOS or a
combination of pure phase EOSs with the assumption of pressure, temperature
and chemical potential equilibrium in the two-phase region (see for example Saurel,
Cocchi & Butler 1999; Liou & Edwards 1999). Such models remove the preceding loss
of hyperbolicity. However, the mixture is assumed to evolve under thermodynamic
equilibrium, thus there are no metastable states. Also, the model is unable to deal
with material interfaces separating a liquid and a non-condensable gas. Hence, it has
a restricted domain of application.

(iii) The mixture Euler equations are sometimes augmented by a mass fraction
equation with a relaxation term (Faucher et al. 2000), as is frequently done for
mixtures of reacting gases. This four-equation model is unable to solve interfaces
between a liquid and a non-condensable gas (water/air for example) as its isothermal
closure is not compatible with interface conditions (equal pressures and normal
velocities but not temperatures). Moreover, determination of the mass relaxation
term is a problem.

(iv) Models can be derived from the second-gradient theory (Cahn & Hilliard
1958). In this approach, the interface is described as a diffuse zone with a capillary
length scale that has to be resolved. This results in severe restrictions as this zone
length is typically of the order of one nanometre. To do practical simulations, at the
scale of an individual bubble for example, the interface has to be thickened (Jamet
et al. 2001). Such a procedure has important consequences for the model’s ability
to deal with metastable states. Also, interfaces with large density gradients are very
difficult to solve, as are interfaces separating immiscible fluids (water/air for example).

2.2. Temperature non-equilibrium models

At least three models belong to this category:
(i) The most conventional temperature non-equilibrium model is the six-equation

model obtained for example with averaging methods (Ishii 1975; Delhaye & Boure
1982). It involves a balance equation of mass, momentum and energy for each fluid.
Unlike the preceeding models, the mixture evolves with two velocities. It is present in
the literature with two options:

(a) One of the phases is considered incompressible, the mixture pressure being
that of the gas phase. This is not compatible with the presence of rarefaction
waves in the liquid phase, whose presence is mandatory in cavitating flows.
(b) Both phases are compressible and the closure is achieved with the pressure
equilibrium assumption (Butler, Lambeck & Krier 1982).

The six-equation model, with both options, has a restricted domain of hyperbolicity.
This results in a restricted validity for problems where transient wave propagation
is not important. Moreover, it is unable to solve interface problems (water/air for
example).

(ii) The seven-equation model (Baer & Nunziato 1986) (and its variants) is
unconditionally hyperbolic and is able to deal with a wide range of applications.
It is composed of the same six equations as previously, augmented by an evolution
equation for the volume fraction of one of the constituents. Its ability to solve
interface problems as well as fluid mixtures with several velocities was demonstrated in
Saurel & Abgrall (1999), Saurel & Le Metayer (2001) and Saurel, Gavrilyuk & Renaud
(2003). This model has been extended to the propagation of evaporation fronts in
cavitating systems (Le Metayer, Massoni & Saurel 2005). The four waves present in
figure 3 are correctly captured and the model is able to deal with metastable states.
It has been used for practical computations and validated against experiments on
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supercavitation. However it is quite complex to code and does not provide information
about the structure of the evaporation front, as the front is considered as a sharp
discontinuity.

(iii) The last model involves a single pressure and velocity. It is composed of
two mass balance equations, one mixture momentum equation, one mixture energy
equation and a volume fraction equation. This five-equation model (Kapila et al. 2001)
is unconditionally hyperbolic. Its ability to solve interface problems with compressible
fluids was demonstrated in Murrone & Guillard (2004), Perigaud & Saurel (2005)
and Petitpas et al. (2007). It was extended in Perigaud & Saurel (2005) to capillary
and viscous effects. Unlike to the Cahn & Hilliard (1958) model, the interface has
no capillary length scale. This has important consequences for numerical resolution
as well as its ability to deal with large density ratios. Another important difference
is thermodynamic closure. Two pure-phase EOS are used instead of a single one,
like that of van der Waals. The model remains away from thermal equilibrium and
the presence of temperature and chemical potential differences will be used below to
derive a relaxation model able to deal with evaporation fronts.

This last model is the starting point of the present analysis. Its derivation in the
presence of heat and mass transfer is detailed below. Its thermodynamic closure, based
on two equations of state, is detailed. The construction of kinetic terms that make the
system relax toward equilibrium is done on the basis of the entropy inequality. With
this kinetic closure and special treatment of stiff relaxation, the model is shown to
be able to compute evaporation fronts by solving their internal structure. Metastable
states are involved, as well as shock, rarefaction and interface dynamics. The dynamic
appearance of cavitation pockets is studied in the following limit situations:

(i) simple mechanical pocket growth,
(ii) mechanical pocket growth with heat and mass exchanges.

3. The flow model when there is no mass transfer
The present approach is based on a five-equation model with a single pressure

and a single velocity but two temperatures and entropies. Mass transfers will be
modelled as relaxation effects. Before doing this, the flow model in the absence of
mass transfer is derived. It is obtained in the asymptotic limit of a non equilibrium
two-phase, two-pressure and two-velocity hyperbolic multiphase flow model. The
following asymptotic reduction follows the lines of Kapila et al. (2001).

3.1. The ‘parent’ model

The starting point of the present analysis is the Baer & Nunziato (1986) model with
symmetric closure relations (Saurel et al. 2003; Chinnayya, Daniel & Saurel 2004):

∂α1

∂t
+ uI · ∇α1 = μ(p1 − p2),

∂α1ρ1

∂t
+ div (α1ρ1u1) = 0, (3.1a, b)

∂α1ρ1u1

∂t
+ div (α1ρkuk ⊗ uk) + ∇(α1p1) = pI ∇α1 + λ(u2 − u1) (3.1c)

∂α1ρ1E1

∂t
+ div (α1(ρ1E1 + p1)u1) = pI uI · ∇α1 + λuI · (u2 − u1) − pIμ(p1 − p2) + Q1

(3.1d)
∂α2ρ2

∂t
+ div (α2ρ2u2) = 0, (3.1e)

∂α2ρ2u2

∂t
+ div (α2ρkuk ⊗ uk) + ∇(α2p2) = pI ∇α2 − λ(u2 − u1) (3.1f )
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∂α2ρ2E2

∂t
+ div (α2(ρ2E2 + p2)u2) = pI uI · ∇α2 − λuI · (u2 − u1) + pIμ(p1 − p2) − Q1.

(3.1g)

We denote respectively by αk, ρk, uk, pk, Ek and ek the volume fraction, the density,
the velocity vector, the pressure, the total specific energy and the internal specific
energy of phase k. The total specific energy is defined as Ek = ek + u2

k/2. Subscripts 1
and 2 refer to the two phases, and I to the interface.

The heat transfer term Q1 is simply modelled by Q1 = H (T2 − T1) where H = hSI

involves the convective heat transfer coefficient h and the specific exchange surface
SI . This system guarantees conservation for the mixture and is frame invariant.

The interaction terms that appear on the right-hand side express the effects which
drive the system to mechanical equilibrium by the way of relaxation coefficients.
Following Saurel et al. (2003) where the continuous limit of the discrete two-phase
flow equations derived in Abgrall & Saurel (2003) is obtained, symmetric closure
relations are available:

μ =
SI

Z1 + Z2

, λ = Z1Z2μ,

where Z represents the acoustic impedance (Z = ρc). The average interfacial pressure
and velocity are given by

pI =
Z1p2 + Z2p1

Z1 + Z2

+ sign

(
∂α1

∂x

)
(u2 − u1)Z1Z2

Z1 + Z2

,

uI =
Z1u1 + Z2u2

Z1 + Z2

+ sign

(
∂α1

∂x

)
p2 − p1

Z1 + Z2

.

(3.2)

The system (3.1) with this choice of interface variables and relaxation coefficient is
consistent with the second law of thermodynamics. Other estimates are also possible;
one other choice is given by Baer & Nunziato (1986):

pI = p1, uI = u2. (3.3)

In the present study, where stiff mechanical relaxation is considered, the estimates
(3.2) and (3.3) can be used interchangeably. However, in the general case of
finite relaxation rate, the estimates (3.2) are able to enforce interface conditions
at each volume fraction discontinuity (equality of normal velocities and pressure)
automatically (Abgrall & Saurel 2003). This system is unconditionally hyperbolic and
admits the characteristic wave speeds: uk, uk + ck, uk − ck for each phase k and the
interface velocity uI .

For the present application, this system involves unnecessary effects (two velocities
and two pressures) and a reduced model is preferred. It is important to determine the
simplest model involving the pertinent physics. The reduction of system (3.1) is done
in the following subsection.

3.2. Reduced model

The two-phase flow model (3.1) can be written using primitive variables, namely

∂U

∂t
= F (U ) + Φ(U ),
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with

U =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α1

α1ρ1

u1

p1

α2ρ2

u2

p2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, F (U ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−u1 · ∇α1

− div (α1ρ1u1)

−u1 · ∇u1 − 1

ρ1

∇p1 +
pI − p1

α1ρ1

∇α1

−ρ1c
2
1 div (u1) +

Γ1

α1

[
pI − ρ2

1

(
∂e1

∂ρ1

)

p1

]
(uI − u1) · ∇α1

− div (α2ρ2u2)

−u2 · ∇u2 − 1

ρ2

∇p2 +
pI − p2

α2ρ2

∇α2

−ρ2c
2
2 div (u2) +

Γ2

α2

[
pI − ρ2

2

(
∂e2

∂ρ2

)

p2

]
(uI − u2) · ∇α2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

Φ(U ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

μ(p1 − p2)

0

λ

α1ρ1

(u2 − u1)

−μ
Γ1

α1

[
pI − ρ2

1

(
∂e1

∂ρ1

)

p1

]
(p1 − p2) + λ

Γ1

α1

(uI − u1)(u2 − u1) +
Γ1

α1

Q1

0

− λ

α2ρ2

(u2 − u1)

μ
Γ2

α2

[
pI − ρ2

2

(
∂e2

∂ρ2

)

p2

]
(p1 − p2) − λ

Γ2

α2

(uI − u2)(u2 − u1) − Γ2

α2

Q1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Here, ck represents the speed of sound of phase k:

∀k = 1, 2 c2
k =

pk

ρ2
k

−
(

∂ek

∂ρk

)

pk(
∂ek

∂pk

)

ρk

,

and Γk represents the Gruneisen coefficient of phase k:

∀k = 1, 2 Γk = vk

(
∂pk

∂ek

)

ρk

where vk = 1/ρk .
The reduced system is obtained in the limit of stiff mechanical relaxation:

μ =
1

ε
, λ =

1

ε
where ε → 0+.
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Note that infinite relaxation parameters are consistent with the expression of pressure
and velocity relaxation parameters linked by the relation λ= Z1Z2μ. It is also
important to note that heat transfer effects are not considered in the same limit,
as we are seeking a temperature non-equilibrium model.

With this notation, the preceding system becomes

∂U

∂t
= F (U ) +

1

ε
Ψ (U ) + Q(U ) (3.4)

with

Ψ (U ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(p1 − p2)

0

Z1Z2

α1ρ1

(u2 − u1)

−Γ1

α1

K1(p1 − p2) +
Z1Z2Γ1

α1

(uI − u1)(u2 − u1)

0

−Z1Z2

α2ρ2

(u2 − u1)

Γ2

α2

K2(p1 − p2) − Z1Z2Γ2

α2

(uI − u2)(u2 − u1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, Q(U ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

0

Γ1

α1

Q1

0

0

−Γ2

α2

Q1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Here, F and Ψ are regular functions evaluated at a state U which is close to the
mechanical equilibrium state U0. We can set

Uε = U0 + εU1 + O(ε2)

and system (3.4) becomes

∂U0

∂t
+ ε

∂U1

∂t
= F (U0) + ε

∂F (U )

∂U
(U0)U1 +

1

ε
Ψ (U0) +

∂Ψ (U )

∂U
(U0)U1

+ Q(U0) + ε
∂Q(U )

∂U
(U0)U1 + O(ε2).

Since U0 is an equilibrium state,

Ψ (U0) = 0 (3.5)

and in the system in reduced form becomes

∂U0

∂t
= F (U0) +

∂Ψ (U )

∂U
(U0)U1 + Q(U0). (3.6)

Condition (3.5) implies that in the asymptotic state, the system has to satisfy

u0
1 = u0

2 = u0
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and

p0
1 = p0

2 = p0.

These constraints used in (3.6) give the reduced model that takes into account heat
transfer effects:

∂α1

∂t
+ u · ∇α1 = K(α1, ρ1, ρ2, p) div(u) +

α1α2

α2ρ1c
2
1 + α1ρ2c

2
2

(
Γ1

α1

+
Γ2

α2

)
Q1,

∂α1ρ1

∂t
+ div(α1ρ1u) = 0,

∂α2ρ2

∂t
+ div(α2ρ2u) = 0,

∂ρu
∂t

+ div(ρu ⊗ u) + ∇p = 0,
∂ρE

∂t
+ div(u(ρE + p)) = 0,

⎫
⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(3.7)

where K = α1α2(ρ2c
2
2 −ρ1c

2
1)/(α2ρ1c

2
1 +α1ρ2c

2
2). The superscript 0 has been omitted for

clarity. The mixture variables are defined by: ρ = α1ρ1 + α2ρ2 and E = Y1E1 + Y2E2,
where Yk = αkρk/ρ denotes the mass fraction of phase k.

4. Thermodynamic closure
In order to circumvent the difficulty of models having negative squared speed of

sound in the two-phase region, the present model uses two equations of state (EOS).
Each fluid possesses its own EOS. In the present paper, we consider stiffened gas
(SG) equations of state, but the method can be generalized to more complex convex
equations of state. The SG EOS or its generalized form (Mie–Gruneisen (MG) EOS)
are usually used for shock dynamics in condensed materials. The parameters used
in these EOS are determined by using a reference curve, usually in the (p, v)-plane.
In shock physics, the Hugoniot curve is used. A discussion of MG and SG EOS is
given in Menikoff & Plohr (1989). It is also possible to use another reference curve to
determine EOS parameters. In Le Metayer, Massoni & Saurel (2004) saturation curves
are used to determine SG parameters for liquid and vapour phases. These curves are
more relevant for phase transition. However, the SG EOS is a linear approximation
of the saturation curve in the (p, v)-plane. Thus, it is valid in a limited range of
pressure and specific volumes, as reported in Le Metayer et al. (2004) and in this
section. If necessary, accuracy can be improved by using a nonlinear approximation
of the saturation curve, for example with the MG formulation, but this is outside the
scope of the present paper.

Our goal in using the SG EOS is to handle the essentials of the physics and
thermodynamics under a simple analytical formulation. Moreover this EOS is the
simplest prototype that contains the main physical properties of pure fluids: attractive
and repulsive molecular effects. Thus, each fluid has its own thermodynamics and in
particular its own entropy. In the present modelling of mass transfer, detailed in the
next section, relaxation towards equilibrium is achieved by a kinetic process, unlike
to van der Waals modelling where mass transfer is a thermodynamic path. This is the
reason why the present modelling preserves hyperbolicity during mass transfer.

However, when equilibrium is reached, conventional properties of the phase diagram
have to be recovered (latent heat of vaporization, saturation temperature) that depend
on pressure or temperature. In other words, the two pure-fluid EOS must be connected
by some constraints. These constraints are used for the determination of the various
constants involved in these EOS.
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For each phase the thermodynamic state is determined by the SG EOS:

e(p, v) =
p + γp∞

(γ − 1)
v + q, (4.1a)

v(p, T ) =
(γ − 1)CvT

p + p∞
, (4.1b)

h(T ) = γCvT + q, (4.1c)

g(p, T ) = (γCv − q ′)T − CvT log
T γ

(p + p∞)(γ −1)
+ q, (4.1d)

where e, v = 1/ρ, p, T , h and g are respectively the internal energy, the specific
volume, the pressure, the temperature, the enthalpy and the Gibbs free energy of the
considered phase. The constants, characteristic of each fluid, are: γ , p∞, Cv , q and q ′.

A method to determine these parameters in gas–liquid systems is given in Le
Metayer et al. (2004). The coupling of gas and liquid parameters is examined parti-
cularly. This method is summarized below.

4.1. Method to determine SG EOS parameters

Parameters of the SG EOS are determined from experimental curves for each fluid.
In the case we are interested in (liquid in the presence of its vapour), we need the
saturation curves. The experimental data needed are: p = psat (T ), hl,exp(T ), hg,exp(T ),
vl,exp(T ), vg,exp(T ) and the latent heat of vaporization Lv,exp(T ) = hg,exp(T ) − hl,exp(T ).

(a) From the expression for enthalpy (4.1c), we have

∀k = l, g:
dhk

dT
= γkCv,k = Cp,k.

This permits the average heat capacity coefficients Cp,k to be determined by a linear
approximation between two reference states 0 and 1 as

∀k = l, g: Cp,k =
hk,exp(T1) − hk,exp(T0)

T1 − T0

.

This also allows the calculation of the reference energies:

∀k = l, g: qk = hk,exp(T0) − Cp,kT0.

(b) Then, by using the experimental curve p = psat (T ), the specific volume is
expressed as

∀k = l, g: vk(T ) =
(Cp,k − Cv,k)T

psat (T ) + p∞,k

. (4.2)

Under logarithmic differentiation, we have

∀k = l, g: d log vk(T )) = d log(T ) − d log (psat (T ) + p∞,k).

The integration of this equation between the two reference states 0 and 1 yields
∀k = l, g:

log(vk(T1)) − log(vk(T0)) = log(T1) − ln(T0) − log(psat (T1)

+ p∞,k) + log(psat (T0) + p∞,k)

This expression allows the calculation of the coefficients p∞,k:

∀k = l, g: p∞,k =
vk(T0)T1psat (T0) − vk(T1)T0psat (T1)

vk(T1)T0 − vk(T0)T1
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(c) Then (4.2) applied to the reference state 0 provides the approximation of Cv,k:

∀k = l, g: Cv,k = Cp,k − vk(T0)

T0

(psat (T0) + p∞,k).

(d) The approximation for γk follows:

∀k = l, g: γk =
Cp,k

Cv,k

.

(e) At thermodynamic equilibrium, the two Gibbs free energies have to be equal
(gg = gl) with the definition (4.1d). This implies

log(p + p∞,v) = A +
B

T
+ C log(T ) + D log(p + p∞,l) (4.3)

where A, B, C and D depend on the SG EOS parameters:

A =
Cp,l − Cp,g + q ′

g − q ′
l

Cp,g − Cv,g

, B =
ql − qg

Cp,g − Cv,g

, C =
Cp,g − Cp,l

Cp,g − Cv,g

,

D =
Cp,l − Cv,l

Cp,g − Cv,g

.

Relation (4.3) is nonlinear but permits the computation of the theoretical curve
p = psat (T ). Such a computation needs the two entropy constants q ′. By convention,
we take q ′

l = 0 J kg−1 K−1 and choose q ′
g in order to obtain the best fit between

theoretical and experimental curves.
This algorithm for the determination of the SG EOS parameters is very accurate

provided that experimental saturation curves are quasi-linear. This means that the
two reference states have to be sufficiently close. Near the critical point, restrictions
appear. But far from this point, wide ranges of temperatures and pressures can be
covered as shown below.

4.2. Results for water and dodecane

As an illustration, results concerning liquid and vapour water and liquid and vapour
dodecane are presented.

For water, the chosen temperature range is 298–473 K. The corresponding experi-
mental data (Oldenbourg 1989) are

psat (T0) = 3166 Pa, hl,exp(T0) = 104.7 × 103 J /K−1g−1,

hg,exp(T0) = 2473.4 × 103 J K−1 g
−1

, vg,exp(T0) = 42.4 m3 K−1 g−1,

psat (T1) = 15.5 × 105 Pa, hl,exp(T1) = 851.6 × 103 J K−1 g−1,

hg,exp(T1) = 2733.7 × 103 J K−1 g−1, vg,exp(T1) = 0.124 m3 K−1 g−1.

The results of the algorithm in § 4.1 are summarized in table 1 and a comparison
between experimental and SG approximation curves is shown in figure 5. Obviously,
some errors are present, essentially regarding the liquid specific volume where a
25 % maximum error is seen. The reason is that the SG EOS is the simplest
prototype involving repulsive and attractive potentials for condensed materials. With
this particularly simple formulation it is possible to fit quite well saturation curves
and phase diagram. If better accuracy is required, a more sophisticated model can
be used (MG EOS for example), at the price of a more cumbersome method to
determine the various constants. Our aim is not to construct EOS in this paper but
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p∞ (Pa) Cp (J kg−1K−1) Cv (J kg−1K−1) γ q (J kg−1) q ′ (J kg−1K−1)

liquid 109 4267 1816 2.35 −1167 × 103 0
vapour 0 1487 1040 1.43 2030 × 103 −23 × 103

Table 1. SG EOS parameters for liquid and vapour water.
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Figure 5. Saturation curves for water in the temperature range 298–473 K. Experimental
curves are shown with lines and the stiffened gas approximation with symbols.

to propose a general technique. The problem of defining a proper equation of state
has been considered in Le Metayer et al. (2004) and the method we propose in this
paper can be applied to more general EOS without special conceptual difficulty. Once
again, our aim is more to show that the new multiphase model, under simplified
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p∞ (Pa) Cp (J kg−1 K−1) Cv (J kg−1 K−1) γ q (J kg−1) q ′(J kg−1 K−1)

liquid 4 × 108 2534 1077 2.35 −755 × 103 0
vapour 0 2005 1956 1.025 −237 × 103 −24 × 103

Table 2. SG EOS parameters for liquid dodecane and its vapour

thermodynamic closure, is able to deal with evaporation waves and metastable states
with reasonable accuracy.

The same algorithm is used to determine thermodynamic parameters of dodecane, in
the temperature range 298–473 K. A phase diagram and associated data are available
in Simoes-Moreira (1994). The corresponding SG EOS parameters are summarized
in table 2. The same accuracy as for water when compared with experimental data
was seen.

4.3. Mixture SG EOS

With the help of the EOS of the phases, the mixture EOS is easily obtained. The
mixture specific internal energy definition is

ρe = α1ρ1e1 + α2ρ2e2.

By using SG EOS (4.1a), each product ρkek can be written

ρkek =
pk + γkp∞,k

γk − 1
+ ρkqk.

Under pressure equilibrium, we obtain the closure relation for system (3.7):

p(ρ, e, α1, α2, Y1, Y2) =

ρ(e − Y1q1 − Y2q2) −
(

α1γ1p∞,1

γ1 − 1
+

α2γ2p∞,2

γ2 − 1

)

α1

γ1 − 1
+

α2

γ2 − 1

(4.4)

With this mixture EOS, the flow model (3.7) reproduces propagation of acoustic
disturbance at the Wood speed of sound (Wood 1930):

1

ρc2
w

=
α1

ρ1c
2
1

+
α2

ρ2c
2
2

. (4.5)

This sound speed has a non-monotonic behaviour versus volume fraction, as shown
in figure 6. The system (3.7) is strictly hyperbolic with the characteristic waves speeds
u + cw , u − cw and u.

5. Mass transfer modelling
5.1. Basic ideas

As mentioned in § 2, it is well known (Menikoff & Plohr 1989) that van der Waals or
cubic EOS used in the context of the Euler or Navier–Stokes equations correspond
to ill-posed models. The square of the sound speed becomes negative in the spinodal
zone. Our model considers phase change as a kinetic transformation and not as a
thermodynamic one. The phase diagram in figure 7 illustrates both options. With the
kinetic representation, metastable states are present, and the mixture sound speed is
always defined. Such an approach poses extra difficulties however:
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water mixture.
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Figure 7. Schematic representation of the thermodynamic path using a cubic EOS compared
to the kinetic process represented in dashed lines. (a) With the cubic EOS, hyperbolicity is
lost in the spinodal zone. (b) The present model consists of using a kinetic transformation
to connect the isentropes of liquid and vapour. As no thermodynamic path is involved, the
mixture sound speed is always defined. In the kinetic approach, from a metastable liquid (end of
liquid isentrope) non-equilibrium vapour and liquid are produced at constant specific volume
for the mixture. Vapour production makes the pressure increase. During kinetic evolution the
non-equilibrium points of liquid and vapour move in the direction of saturation curves. At each
non-equilibrium state pressure equilibrium is assumed. When thermodynamic equilibrium is
reached, liquid and vapour states are located on saturation curves. Then, if the specific volume
is increased, the equilibrium concentration evolves and as limit case, the vapour expands along
an isentrope starting from the saturation curve. Note that when the various non-equilibrium
states are omitted, the global transformation path (the bold dashed line), composed of two
thermodynamic paths and a kinetic one, gives a transformation very closed to that of van der
Waals. The main difference is that ill-posedness issues have been removed.

(i) determination of the phases EOS – this issue has been examined previously;
(ii) determination of mass transfer terms.

The system (3.7) describes a compressible two-phase flow mixture in mechanical
equilibrium but not in thermal equilibrium. The goal is now to introduce mass
transfer effects. The addition of mass transfer modifies the mass equation of each
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fluid:

∂α1ρ1

∂t
+ div (α1ρ1u) = ρẎ1,

∂α2ρ2

∂t
+ div (α2ρ2u) = −ρẎ1,

where ρẎ1 represents the mass flux from fluid 2 to fluid 1. Mass transfer is considered
with a finite rate, which means that it has no dependence on the small parameter ε.
An expression for this mass flux has to be determined.

Mass transfer implies changes in the volume fraction. We assume that the volume
fraction equation becomes

∂α1

∂t
+ u · ∇α1 = Kdiv(u) +

α1α2

α2ρ1c
2
1 + α1ρ2c

2
2

(
Γ1

α1

+
Γ2

α2

)
Q1 +

ρẎ1

ρI

(5.1)

where the interfacial density ρI has to be determined. The determination of the
expressions for mass transfer Ẏ1 and interface density ρI is based upon the analysis of
the entropy production. To this end, the first step is to determine the entropy equation
for each fluid.

5.2. Determination of the entropy equations of the phases

The entropy equations are determined as solutions of an algebraic system based on:
(i) energy conservation of the mixture,
(ii) pressure equilibrium between phases.

Let us first examine the constraint given by energy conservation to the entropy
equations. By using the energy and momentum equations of system (3.7), a simpler
form of the energy equation is obtained:

de

dt
+ p

dv

dt
= 0 (5.2)

where the mixture internal energy is defined by e = Y1e1 +Y2e2 and the mixture specific
volume is given by v = Y1v1 + Y2v2. Thus (5.2) becomes

Y1

(
de1

dt
+ p

dv1

dt

)
+ Y2

(
de2

dt
+ p

dv2

dt

)
+ (h1 − h2)Ẏ1 = 0.

Here hk = ek + pvk is the enthalpy of phase k. By using the Gibbs identity for each
phase k, we have

dek

dt
+ p

dvk

dt
= Tk

dsk

dt
.

The mixture energy conservation now becomes

Y1T1

ds1

dt
+ Y2T2

ds2

dt
+ (h1 − h2)Ẏ1 = 0. (5.3)

This last equation involves the two functions ds1/dt and ds2/dt that we want to
determine.

A second equation is provided by the mechanical equilibrium condition:

p1(ρ1, s1) = p2(ρ2, s2), (5.4)

from which we get
(

∂p1

∂ρ1

)

s1

dρ1

dt
+

(
∂p1

∂s1

)

ρ1

ds1

dt
=

(
∂p2

∂ρ2

)

s2

dρ2

dt
+

(
∂p2

∂s2

)

ρ2

ds2

dt
.
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The definition of the speed of sound and Gruneisen coefficient for each phase enables
us to write

for k = 1, 2:

(
∂pk

∂ρk

)

sk

= c2
k and

(
∂pk

∂sk

)

ρk

= ρkΓk Tk.

The mechanical equilibrium condition (5.4) becomes

c2
1

dρ1

dt
+ ρ1Γ1 T1

ds1

dt
= c2

2

dρ2

dt
+ ρ2Γ2 T2

ds2

dt
. (5.5)

Equations (5.3) and (5.5) form a system of two equations with the two unknown
functions ds1/dt and ds2/dt , and then we get

α1ρ1α2ρ2

ρ
T1

(
Γ1

α1

+
Γ2

α2

)
ds1

dt
= Y2

(
c2

2

dρ2

dt
− c2

1

dρ1

dt

)
− ρ2Γ2(h1 − h2)Ẏ1, (5.6a)

α1ρ1α2ρ2

ρ
T2

(
Γ1

α1

+
Γ2

α2

)
ds2

dt
= −Y1

(
c2

2

dρ2

dt
− c2

1

dρ1

dt

)
− ρ1Γ1(h1 − h2)Ẏ1, (5.6b)

The next step is to replace the variation dρ1/dt and dρ2/dt by variations of the
volume fraction and velocity divergence with the help of the mass equations. The
system (5.6) now becomes

α1ρ1α2ρ2

ρ
T1

(
Γ1

α1

+
Γ2

α2

)
ds1

dt
= Y2

[(
ρ1c

2
1

α1

+
ρ2c

2
2

α2

)
dα1

dt
−

(
ρ2c

2
2 − ρ1c

2
1

)
div(u)

]

− ρY2

(
c2

1

α1

+
c2

2

α2

)
Ẏ1 − ρ2Γ2(h1 − h2)Ẏ1, (5.7a)

α1ρ1α2ρ2

ρ
T2

(
Γ1

α1

+
Γ2

α2

)
ds2

dt
= −Y1

[(
ρ1c

2
1

α1

+
ρ2c

2
2

α2

)
dα1

dt
−

(
ρ2c

2
2 − ρ1c

2
1

)
div(u)

]

+ ρY1

(
c2

1

α1

+
c2

2

α2

)
Ẏ1 − ρ1Γ1(h1 − h2)Ẏ1. (5.7b)

Then by using the volume fraction equation (5.1), the entropy equations become
functions only of heat exchange, mass transfer and interfacial density ρI :

Y1

ds1

dt
=

H (T2 − T1)

ρT1

− Ẏ1(h1 − h2)

Γ1T1

α1

(
α1

Γ1

+
α2

Γ2

)

+
Ẏ1

T1

(
Γ1

α1

+
Γ2

α2

)

⎛
⎜⎜⎝

ρ1c
2
1

α1

+
ρ2c

2
2

α2

ρI

−
(

c2
1

α1

+
c2

2

α2

)
⎞
⎟⎟⎠ (5.8a)

Y2

ds2

dt
= −H (T2 − T1)

ρT2

− Ẏ1(h1 − h2)

Γ2T2

α2

(
α1

Γ1

+
α2

Γ2

)

+
Ẏ1

T2

(
Γ1

α1

+
Γ2

α2

)

⎛
⎜⎜⎝−

ρ1c
2
1

α1

+
ρ2c

2
2

α2

ρI

+

(
c2

1

α1

+
c2

2

α2

)
⎞
⎟⎟⎠ (5.8b)
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Figure 8. Schematic representation of liquid evaporation. An elementary volume 
v of liquid
is transformed to vapour with a pressure perturbation. Acoustic waves propagates through
liquid and vapour, reflect at volume boundaries and restore pressure equilibrium. The overall
process is isentropic as these waves are of small amplitude. These waves are necessarily weak
as evaporation is a continuous phenomenon. Elementary volume and pressure perturbations
tend to zero.

5.3. Examination of the entropy production of the phases

The entropy equation for each phase (5.8) is composed of three terms. Each of them
expresses a physical phenomenon responsible for entropy production:

the first one is related to heat exchange,
the second one is associated with mass transfer,
the last term is associated with pressure relaxation process associated with mass

transfer. Consider a pressure perturbation appearing during mass transfer, see figure 8.
The system returns to mechanical equilibrium with the help of acoustic waves emitted
during evaporation. This is similar to acoustic waves emitted by flames. These waves
of small amplitude are isentropic.

We thus consider that the pressure relaxation process present during mass transfer
is isentropic. This corresponds to the third term on the right-hand side of (5.8) which
vanishes. This allows determination of the interface density:

ρI =

ρ1c
2
1

α1

+
ρ2c

2
2

α2

c2
1

α1

+
c2

2

α2

. (5.9)

5.4. Mixture entropy inequality

The second principle of thermodynamics applied to the mixture is:

∂ρs

∂t
+ div(ρsu) � 0

where the mixture entropy is defined as s = Y1s1 + Y2s2.
Using mass equations and expressions (5.8) for the entropies in this inequality leads

to

H (T2 − T1)
2

ρ
+ (g2 − g1)TI Ẏ1 � 0 (5.10)
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where an ‘interface temperature’ appears:

TI =

(
Γ1T1

α1

+
Γ2T2

α2

)/(
Γ1

α1

+
Γ2

α2

)

The extended Gibbs free energies appear:

for k = 1, 2: gk = hk − T sk,

with hk the enthalpy of phase k and T = T1T2/TI .
It appears clearly that the first term of (5.10) related to heat exchange is necessarily

greater than or equal to zero. The second term will be greater than or equal to zero
if we assume that

Ẏ1 = ν(g2 − g1)

where ν is a positive relaxation parameter that controls the rate at which the mixture
relaxes to thermodynamic equilibrium. This corresponds to the form of mass transfer
terms we were seeking. Note that this modelling of relaxation terms guarantees
equilibrium conditions of equal temperatures and equal Gibbs free energies.

5.5. The model

We now have a symmetric hyperbolic non-equilibrium compressible two-phase flow
model with heat and mass exchanges:

∂α1

∂t
+ u · ∇α1 = Kdiv(u) +

α1α2

α2ρ1c
2
1 + α1ρ2c

2
2

(
Γ1

α1

+
Γ2

α2

)
Q1 +

ρ1c
2
1

α1

+
ρ2c

2
2

α2

c2
1

α1

+
c2

2

α1

ρẎ1,

(5.11a)

∂α1ρ1

∂t
+ div(α1ρ1u) = ρẎ1, (5.11b)

∂α2ρ2

∂t
+ div(α2ρ2u) = −ρẎ1, (5.11c)

∂ρu
∂t

+ div(ρu ⊗ u) + ∇p = 0, (5.11d)

∂ρE

∂t
+ div(u(ρE + p)) = 0, (5.11e)

where

K =
α1α2

(
ρ2c

2
2 − ρ1c

2
1

)

α2ρ1c
2
1 + α1ρ2c

2
2

,

Ẏ1 = ν(g2 − g1),

Q1 = H (T2 − T1).

The mixture pressure is given by (4.4):

p(ρ, e, α1, α2, Y1, Y2) =

ρ(e − Y1q1 − Y2q2) −
(

α1γ1p∞,1

γ1 − 1
+

α2γ2p∞,2

γ2 − 1

)

α1

γ1 − 1
+

α2

γ2 − 1

.

The determination of the temperature relaxation parameter H for a two-phase mixture
with arbitrary interfacial area is a difficult issue, as is that of the phase transition
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kinetics parameter ν that depends not only on interfacial area but also on local
chemical relaxation. To circumvent these difficulties, we use a solution procedure
based on infinite relaxation parameters, but at selected spatial locations only. More
precisely, in order to retain metastable states, the relaxation parameters H and ν will
be set to zero for locations far from the interfaces. At the interfaces, they will be
taken infinite in order to fulfil equilibrium interface conditions with mass transfer.
When dealing with interfaces of simple contact, they will be set to zero everywhere.
This procedure is summarized by

H, ν =

{
+∞ if ε � α1 � 1 − ε

0 otherwise

5.6. Limit interface model

It is interesting to note that this relaxation method corresponds to the local resolution
(in fact at the interface only) of the following limit system, corresponding to the
mixture Euler equations:

∂ρ

∂t
+ div(ρu) = 0,

∂ρu
∂t

+ div(ρu ⊗ u + p) = 0,

∂ρE

∂t
+ div[(ρE + p)u] = 0,

⎫
⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(5.12)

where the mixture density is ρ = α1ρ1 + α2ρ2 and the mixture internal energy is
ρe = α1ρ1e1 + α2ρ2e2. The total mixture energy is still defined by E = e + u2/2.

This system is closed by three thermodynamic equilibrium conditions:

p1 = p2 = p, (5.13)

T1 = T2 = T , (5.14)

g1 = g2. (5.15)

With the help of the SG EOS (4.1) with conditions (5.13) and (5.14), each phase
variable can be expressed as a function of pressure and temperature. The definitions
of mixture density and internal energy are now

ρ = α2[ρ2(p, T ) − ρ1(p, T )] + ρ1(p, T ),

e =
1

ρ
[α2[ρ2(p, T )e2(p, T ) − ρ1(p, T )e1(p, T )] + ρ1(p, T )e1(p, T )].

⎫
⎬
⎭ (5.16)

The condition (5.15) now reduces to the mixture EOS (4.3) and system (5.16) becomes

α2(T ) =
ρ − ρ1(T )

ρ2(T ) − ρ1(T )
, (5.17)

e(T ) =
1

ρ
[α2(T )[ρ2(T )e2(T ) − ρ1(T )e1(T )] + ρ1(T )e1(T )]. (5.18)

Equation (5.18) can be solved numerically. It allows the determination of α2 with
(5.17) and p with (4.3). Thus, the system is closed.

The system (5.12) can also be written under primitive variable form:

dρ

dt
+ ρ

∂u

∂x
= 0,

du

dt
+

1

ρ

∂p

∂x
= 0,

dp

dt
+ ρc2 ∂u

∂x
= 0. (5.19)
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By using the sound speed definition c2 = (∂p/∂ρ)s the following expression is ob-
tained:

1

ρc2
eq

=
α1

ρ1c
2
1

+
α2

ρ2c
2
2

+ T

[
α1ρ1

Cp,v

(
ds1

dp

)2

+
α2ρ2

Cp,l

(
ds2

dp

)2
]

(5.20)

corresponding to the thermodynamic equilibrium mixture speed of sound. Details are
given in Appendix A. The Wood formula (4.5) is recovered with the first two terms
of (5.20). This limit model is again hyperbolic with the characteristic waves speeds:
u + ceq , u − ceq and u.

However, with the algorithm detailed in the following, there is no need to solve (5.12)
explicitly. The coupling with chemically inert zones far from evaporation fronts and
a diffuse interface zone governed by (5.12) will be done by the numerical procedure
described in the next section. It relies on system (5.11).

6. Numerical method
The numerical method to solve the compressible two-phase flow system (5.11) with

heat and mass transfer proceeds in two steps. At each time step, the hyperbolic
system in the absence of heat and mass transfer is solved. This provides the non-
equilibrium hydrodynamic field. Stiff thermal and chemical relaxations are then solved
at the interfaces only. The interfaces are detected from knowledge of volume fraction
fields.

The basic ingredients of the hyperbolic solver are summarized below following
Petitpas et al. (2007). This solver is not conventional as the hyperbolic system is not
conservative. Conventional Godunov-type schemes or other existing methods are not
suitable for its resolution. Then we present a new stiff differential solver specifically
derived for the present model. It is used for integration of stiff heat and mass transfer
terms.

6.1. Hyperbolic solver

The hyperbolic system (5.11) without heat and mass transfer is

∂α1

∂t
+ u · ∇α1 = K(α1, ρ1, ρ2, p) div (u),

∂α1ρ1

∂t
+ div (α1ρ1u) = 0,

∂α2ρ2

∂t
+ div (α2ρ2u) = 0,

∂ρu
∂t

+ div (ρu ⊗ u) + ∇p = 0,

∂ρE

∂t
+ div [u(ρE + p)] = 0.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.1)

The volume fraction equation of system (6.1) is not written in conservative form. This
raises two important difficulties regarding numerical resolution:

(i) Conventional shock relations are not available. In their absence, the Riemann
problem cannot be solved. The Riemann problem is the cornerstone of modern
numerical methods to solve hyperbolic systems.

(ii) The average of the volume fraction variable within a computational cell has
no physical meaning. Cell averages have meaning only for conservative variables.
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Non-conventional shock relations for system (6.1) are proposed in Saurel et al.
(2007b). These relations:

Guarantee conservation of the mixture.
Tend to the single-phase shock relations when one of the phases disappears. They

thus guarantee correct behaviour in the single-phase limit. This feature is important
for interface problems.

Preserve volume fraction positivity. This is also an important feature for numerical
resolution in the presence of material interfaces.

Are symmetric with respect to the phases. This allows a possible extension of the
model to an arbitrary number of components.

Are in perfect agreement with experimental shock measurements. It has been
validated for more than 100 experimental tests involving a wide range of shock
strength, very different acoustic impedance ratios between phases, different initial
volume fractions of the phases, different EOS of pure components. See again Saurel
et al. (2007b).

Last, the mixture Hugoniot curve is tangent to the mixture isentrope. This means
that multiphase weak shock waves behave like simple compression waves. This feature
is also important for the Riemann problem resolution.

These relations are summarized as follows:

for k = 1, 2; Yk = Y 0
k ,

ρ(u − σ ) = ρ0(u0 − σ ) = m,

p − p0 + m2(v − v0) = 0,

for k = 1, 2: ek − e0
k +

p + p0

2

(
vk − v0

k

)
= 0.

⎫
⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(6.2)

Thanks to these relations and Riemann invariants, exact or approximate Riemann
solvers can be derived (Petitpas et al. 2007). Once the Riemann problem is solved,
the second difficulty is to average or project the Riemann problem solution onto
the computational cell. Because of the volume fraction variable, we cannot use
conventional projection methods. Thus a specific relaxation-projection method has
been derived in Saurel et al. (2007a) and Petitpas et al. (2007). All details are available
in these references.

6.2. Stiff thermo-chemical solver

The cell now contains a multiphase mixture in mechanical equilibrium but not in
thermal and chemical equilibrium. Indeed, each phase in the cell has its own tempe-
rature and Gibbs free energy. In order to fulfil interface conditions in the presence
of heat and mass transfer (equal temperatures and chemical potentials) a relaxation
method is used. The interface is located by the following procedure:

(i) A cell is considered filled by a pure fluid when its volume and mass fractions
are close to 1 (say for example 1 − ε1 where typically ε1 = 10−8) . The interface
corresponds to mixture cells when volumes and mass fractions range between ε2 and
1 − ε2 (typically, ε2 = 10−6). This second small parameter has to be chosen in order
that evaporation occurs only in the interfacial zone and not during expansion waves
that produce metastable states; expansion waves induce gas volume fraction increase.
If ε2 is taken too close to ε1 evaporation may occur too early and not only in the
interfacial zone.

(ii) Mass transfer is allowed if one of the fluids in the mixture cell is metastable
(Tk > Tsat (P ))).
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The hydrodynamic evolution having now been obtained by the numerical approxi-
mation of system (6.1) the goal is to solve the following system of ordinary differential
equations at the interface only:

∂α1

∂t
=

α1α2

α2ρ1c
2
1 + α1ρ2c

2
2

(
Γ1

α1

+
Γ2

α2

)
Q1 +

ρ1c
2
1

α1

+
ρ2c

2
2

α2

c2
1

α1

+
c2

2

α1

ρẎ1 = Sα1
,

∂α1ρ1

∂t
= ρẎ1 = SY1

,
∂α2ρ2

∂t
= −ρẎ1,

∂ρu
∂t

= 0,
∂ρE

∂t
= 0.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.3)

The integration of this system necessitates closure relations for Q1 and Ẏ1, in
particular regarding relaxation parameters H and ν. In order that the model be
free of parameters we assume that thermodynamic local equilibrium is reached at
the interface at any time. This means that H and ν tend to infinity locally. This
assumption is standard at equilibrium interfaces when mass transfer occurs. It does
not mean that the entire flow evolves at thermodynamic equilibrium. The states
remain not in equilibrium far from interfaces.

In the context of numerical integration, taking infinite relaxation parameters means
that the equilibrium has to be reached at the end of each time step. The time step
is imposed by CFL restriction of the hydrodynamic system. Using this time step, we
determine Q1 and Ẏ1 in order that thermodynamic equilibrium be reached at the end
of each time step. To determine these source terms, the equations for the temperatures
and Gibbs free energies differences are necessary

∂
T

∂t
= AQ1 + BẎ1,

∂
g

∂t
= A′Q1 + B ′Ẏ1, (6.4)

where A, B, A′, B ′ are functions of all flow variables. Their expressions are detailed
in Appendix B.

The simplest numerical approximation of these equations is used. Let n and n + 1
denote two successive time steps. The variables at time tn are taken equal to those
resulting from the numerical integration of system (6.1). The variables at time tn+1

denote the end of the integration process, including both hydrodynamic effects and
source terms (6.3). The simplest numerical approximation of this ODE system is

(
T )n+1 − (
T )n


t
= AnQn

1 + BnẎ n
1 ,

(
g)n+1 − (
g)n


t
= A′nQn

1 + B ′nẎ n
1 .

⎫
⎪⎪⎬
⎪⎪⎭

(6.5)

By imposing that thermodynamic equilibrium is reached at the end of the time step
we have (
T )n+1 = 0 and (
g)n+1 = 0. The corresponding heat and mass transfer
terms are given by

Q1 = − B ′

AB ′ − A′B

(
T )n


t
+

B

AB ′ − A′B

(
g)n


t
,

Ẏ1 =
A′

AB ′ − A′B

(
T )n


t
− A

AB ′ − A′B

(
g)n


t
.

⎫
⎪⎪⎬
⎪⎪⎭

(6.6)

These approximations of heat and mass transfer terms allow the calculation of source
terms Sα1

and SY1
of system (6.3). Nevertheless, there is no guarantee that positivity

of the solution be preserved, in particular regarding mass and volume fractions.
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A limitation must be placed on these source terms. Let us express the maximum
admissible source term for the volume fraction evolution in order to preserve positivity
of this variable:

Smax,α1
=

⎧
⎪⎨
⎪⎩

1 − α1


t
if Sα1

> 0

−α1


t
otherwise.

(6.7)

The same maximum source term is computed for mass fraction positivity. Thus, if
|Smax,α1

| > |Sα1
| and |Smax ,Y1

| > |SY1
|, the numerical integration can be done with the

hydrodynamics time step. Otherwise, equations are stiff and the integration time step
has to be reduced. The ratio Rα1

= Smax ,α1
/Sα1

is computed and the system (6.3) is
integrated over a fraction of the time step, typically: 
tchem = Rα1


t/2. Successive
point integrations are done in order that the complete hydrodynamic step be covered.

With this algorithm, thermodynamic equilibrium is reached very fast and positivity
of the solution is preserved. Using this relaxation method corresponds to the local
resolution (actually at the interface only) of the limit system, corresponding to the
mixture Euler equations (5.12).

7. Numerical results
The aim of this section is to highlight the capabilities of the model in the numerical

resolution of interface problems with or without mass transfer. A set of one-
dimensional tests are first considered for validation issues. Then two-dimensional
tests are addressed for the dynamic creation of super-cavitating flow pockets.

7.1. Two-phase shock tube without mass transfer

In this example, the left part of a shock tube is filled with liquid dodecane at
high pressure pl = 108 Pa with density ρl = 500 kg m−3. The right chamber is set at
atmospheric pressure and filled with vapour dodecane at density ρv = 2 kg m−3. The
initial discontinuity is located at x = 0.75 m in a 1 m long tube. For numerical reasons,
each chamber of the tube contains a weak volume fraction of the other fluid (typically
10−8).

In the first example, the liquid-gas interface is solved as a contact discontinuity:
heat and mass transfer are removed. The results are shown at time t = 473 μs in
figure 9 and consist of three conventional waves. From left to right, a left-facing
rarefaction wave propagates through the liquid, the contact discontinuity is moving
from left to right and a right-facing shock propagates through dodecane vapour. The
numerical solution is compared to the exact one and shows a perfect agreement.

7.2. Two-phase shock tube with mass transfer

We now rerun the same test case and consider heat and mass transfer at the interface.
The rarefaction wave propagation transforms the stable high-pressure liquid dodecane
into a superheated liquid and evaporation has to be considered (figure 10). An
additional left-facing wave (evaporation front) appears between the rarefaction wave
and the contact discontinuity. It propagates through the superheated liquid and
produces a liquid-vapour mixture at thermodynamic equilibrium and high velocity.

Infinite relaxation parameters are used at the interface only. The limit model
corresponds to the mixture Euler equations (5.12), for which acoustic disturbances
propagate at ceq (5.20). Far from the interface, the Kapila et al. (2001) model is solved
in the absence of relaxation terms. This model tends to the considered pure fluid
Euler equations, for which acoustic disturbances propagate at ck (the speed of sound
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Figure 9. Dodecane liquid–vapour shock tube without mass transfer. The numerical solution
(symbols) is compared to the exact one (lines). An excellent agreement is observed. The velocity
graph scale has been chosen in order that a direct comparison with the results of figure 10 be
easy.

of phase k). As ceq is always lower than (or equal to) ck , acoustic perturbations in pure
phases propagate faster than evaporation fronts (whose velocity cannot exceed ceq ).
Thus, acoustic precursors are present and correspond to expansion or compression
waves in pure fluid. They produce metastable states.

We can see the four waves (the left-facing expansion wave, the evaporation front, the
contact discontinuity and the right-facing shock as was mentioned in the introduction
section and in figure 3) on the mixture density graph of figure 10. The evaporation
front makes the vapour mass fraction increase, but total evaporation is not reached.
The second jump in mass fraction is related to the contact discontinuity.

The corresponding phase-space trajectory is reported in figure 11 together with the
mixture density graph where all fluid states are visible. Stable high-pressure liquid
dodecane represented by point 1 is expanded until point 2 with an isentropic path.
Point 2 corresponds to metastable liquid dodecane close to the liquid saturation
boundary. This point lies inside the saturation dome and is close to the saturation
boundary because thermal and chemical relaxation occurs infinitely fast as soon as
metastability appears (in the present modelling). The thermal and chemical relaxation
transforms the metastable liquid into a liquid–vapour mixture under thermodynamic
equilibrium (points 3l and 3v). The mixture is now located at point 3 between points
3l and 3v , at a specific volume greater than those of point 2. Pressure decreases
between points 2 and 3 while specific volume increases as these points belong to the
evaporation front, that corresponds here to an expansion wave of the equilibrium
system (see figure 13 and related discussion). On the other part of the shock tube,
initial vapour (point 5) is shocked and follows a Hugoniot curve until point 4. Points



Modelling phase transition in metastable liquids 337

1000

100

P
re

ss
ur

e 
(0

.1
 ×

 M
P

a)

10

1

1000

100

10

1

0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6

V
ap

ou
r 

m
as

s 
fr

ac
ti

on
V

el
oc

it
y 

(m
 s

–1
)

M
ix

tu
re

 d
en

si
ty

 (
kg

 m
–3

)

0.8 1.0

0 0.2 0.4 0.6
x (m)x (m)

0.8 1.00 0.2 0.4 0.6 0.8 1.0

1.0

0.8

0.6

0.4

0.2

350

300

250

200

150

100

50

Figure 10. Dodecane liquid–vapour shock tube with mass transfer. The thermo-chemical
solver is used at the interface. An extra wave appears leading to evaporation of superheated
liquid. The second jump in mass fraction is the contact discontinuity between the liquid-vapour
mixture produced by evaporation and shocked vapour initially present in the right-hand
chamber. The velocity graph can be compared with those of figure 9, where mass transfer at
the interface is absent.

3 and 4 have no thermodynamic connections as they are just linked by mechanical
equilibrium through a simple contact discontinuity. Consequently, the present test
problem corresponds to a Riemann problem for a material with a phase transition
and an equilibrium equation of state. Because of the discontinuity in the sound speed
at the phase boundary, a rarefaction wave splits into two waves, due to the convex
kink in the isentrope in the (p, v)-plane. This behaviour is well known. An extensive
description of the Riemann problem for materials with phase transition can be found
in Muller & Voss (2006).

A simple interpretation of the differences between the results of figure 10 where
mass transfer is present and the results of figure 9 where mass transfer is absent can
be obtained graphically in the (u, p)-plane. In both cases, the velocity and pressure
in the shock state correspond to the intersection of the wave curves. The shock curve
has a slope given by ρ(D − u) where D represents the shock speed. The expansion
wave has a slope given by −ρc , where ρ represents the mixture density and c the
mixture sound speed. For both cases (with and without mass transfer) the right-facing
shock curve for the gas is the same, but the slope of the expansion wave varies when
mass transfer occurs. Indeed, the left-facing wave curves for the liquid are the same
until the rarefaction hits the phase boundary. The slope of this curve then changes
drastically when mass transfer occurs, as the equilibrium sound speed is lower than
the frozen one. Hence the intersection of the wave curves has larger value for u. This
is clearly visible on these two figures where the velocity changes from 150 m s−1 up
to 330 m s−1.
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Figure 11. Phase-space trajectory for the flow simulated in figure 10. Trajectory between
points 2 and 3 in the phase diagram represents kinetic connection between superheated liquid
and equilibrium mixture. Points 3 and 4 have no thermodynamic connections as they are just
linked by mechanical equilibrium through a simple contact discontinuity separating vaporized
mixture and shocked initial vapour.

7.3. Validation against shock tube experiments

Experiments in shock tubes have been carried out by Simoes-Moreira & Shepherd
(1999). Liquid dodecane is initially kept stable at a certain temperature and is
suddenly expanded into a low-pressure chamber. An evaporation front propagates into
metastable liquid dodecane ejecting high-velocity liquid–vapour mixture. The velocity
of this front was measured for different initial temperatures of liquid dodecane.
Front velocities are computed under the same conditions as the present model and
compared with experiments. Results are shown in figure 12. Each point corresponds
to a shock tube computation with a given initial temperature of the liquid in the
high-pressure chamber. The agreement is not perfect but front velocities are of
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Figure 12. Evaporation front velocity in superheated dodecane versus initial temperature of
liquid dodecane. The experimental results of Simoes-Moreira & Shepherd (1999) (solid line)
are compared with front velocities computed with the new model (dashed line).

the same order of magnitude and the same tendency of increasing front velocity
with increasing temperature is observed. The discrepancies between experimental and
computed results are explained by the inaccuracies present in the simplified model
EOS used for the phases. Using a more sophisticated EOS than SG (MG for example)
is an option to improve this point (see the discussion in § 4).

7.4. The CJ kinetic relation

The Chapman–Jouguet (CJ) kinetic relation is often used to close the Rankine
Hugoniot system to deal with evaporation fronts in metastable liquids. In this
context, the front is considered as a discontinuity whose speed is determined by
the CJ condition. Obviously, such a procedure is approximate and valid only in limit
situations, when the liquid is highly metastable so that the system tends to evaporate
as fast as possible, i.e. with the maximum admissible mass flow rate. This limit
evaporation regime is considered in the present model with a slight modification.

In the present model the interface is solved as a relaxation zone where the
multiphase flow model tends to the equilibrium Euler equations. This last system
admits very different waves speeds than the ones of the temperature non-equilibrium
model. This results in the appearance of a transition front that corresponds to an
expansion wave of the equilibrium model. Observation of the numerical results at
different times shows a smearing of the evaporation wave, exactly as a computed
expansion wave and not as a contact discontinuity. As represented in figure 13, this
expansion wave propagates to the left at velocity approximately equal to u − ceq .
There is no contradiction up to this point between our modelling and previous
Hugoniot analysis. Conventional modelling based on jump conditions closed by the
CJ assumption consider the front as a discontinuity obeying the principle of mass,
momentum and energy conservation with an evaporation wave propagating at the
maximum admissible speed (CJ). Such a model was proposed by Chaves (1984) and
validated against many experiments when a retrograde liquid is highly metastable.
In our approach, the wave is solved as an expansion wave of the relaxed system. It
also obeys to the principles of mass, momentum and energy conservation. Its speed
corresponds to that of acoustic waves of the equilibrium system u − ceq with the
sound speed given by (5.20). It is also associated with a pressure decrease, as in all
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Figure 13. Comparison between local wave speed (solid lines) computed with σi = (ρu)i−
(ρu)i−1/(ρi − ρi−1), characteristic velocity based on the equilibrium speed of sound u − ceq

(dashed lines) and characteristic velocity based on the mechanical equilibrium u − cW (Wood)
speed of sound. The comparison is for the flow simulated in figure 10 in the x-range where
the evaporation front is present. It appears clearly that the evaporation front propagates at
the local characteristic wave speed of the equilibrium system.

expansions waves. It is thus in agreement with the CJ representation, except that the
front is not considered as a discontinuity.

Another difference appears regarding thermodynamics. The CJ state is a local
entropy maximum on the expansive branch of the Hugoniot locus. In the present
model, each point of the evaporation front is at constant entropy as the front
corresponds to an expansion wave of the equilibrium system. Consequently, both
models give front speeds of the same order of magnitude but correspond to different
representations.

The differences in accuracy when compared for example with Simoes-Moreira &
Shepherd’s (1999) results are due to the EOS. The equilibrium EOS of the present
relaxed system is not exactly the same as in Simoes-Moreira & Shepherd (1999). This
is due to our non-equilibrium modelling where initially two EOS are used, resulting
in an approximate equilibrium EOS.

Note that CJ evaporation fronts are associated with extreme conditions. Under
moderate conditions, the front is subsonic and its dynamics is governed by multi-
dimensional effects where thermal diffusion, capillary effects and chemical relaxation
play an important role. Such effects can be introduced in the present approach by
coupling the present relaxation method with the capillary and dissipative effects
modelling described in Perigaud & Saurel (2005). Extra efforts are necessary to reach
this goal.

7.5. Two-phase expansion tube

In the following examples, front propagation in pure liquids is not considered. The
aim is now to deal with cavitation in liquids considered as not pure. Consequently the
only evaporation criterion used to activate the phase transition process corresponds
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Figure 14. The multiphase model computed solution (symbols) without mass transfer is
compared to the exact one (lines) for the symmetric expansion tube.

to the metastability criterion. Phase transition is allowed only if one of the fluids is
metastable (Tk >Tstat(P )).

In this example, a 1 m long tube is filled with liquid water at atmospheric pressure
and with density ρ = 1150 kg m−3. An initial velocity discontinuity is located at
x = 0.5 m. On the left, the velocity is set to u = − 2 m s−1 and on the right, u = 2 m s−1.
An initial weak volume fraction of vapour water (αv = 10−2) is added to the liquid.
Thermodynamic parameters of water are given in table 1. First, the numerical solution
without mass transfer is compared to the exact one. The solution is represented in
figure 14 at time t = 3.2 ms. It results in left- and right-facing rarefaction waves. The
vapour volume fraction increases at the centre of the domain. This is due to the gas
mechanical expansion present in small proportions. This effect tends to create new
interfaces in the domain. The dynamic appearance of these interfaces is considered
in the numerical resolution as well as in the exact solution, provided in Petitpas et al.
(2007). The gas pocket that appears is not due to mass transfer, but to mechanical
relaxation only (bubble growth).

However, these rarefaction waves make the liquid metastable and phase transition
may occur. Figure 15 presents the solution when mass transfer is involved. The
solution is shown at the same time as previously and compared to the previous
exact solution without evaporation. Liquid water is expanded until the saturation
pressure is reached (see the pressure graph) then evaporation appears and a quite
small amount of vapour is created (see the mass fraction graph). This small amount
of vapour has nevertheless large consequences for the vapour volume fraction that
increases significantly.

The solution with mass transfer is composed of four expansion waves, as shown
in figure 16. In order to highlight the two slow expansion waves, the solution is
shown at time t = 59 ms in figure 17. The two leading fast expansion waves have left
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Figure 15. The multiphase model computed solution (symbols) with mass transfer is
compared to the exact one (lines) without mass transfer for the symmetric expansion tube.
Mass transfer appears and results in important differences for all flow variables.
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Figure 16. Wave propagation diagram of the symmetric expansion tube.

the tube. The two slow evaporation fronts have characteristic profiles of expansion
waves. This observation confirms the previous interpretation of evaporation fronts as
expansion waves of the equilibrium system. When rarefaction effects become stronger,
it is possible to see the four waves present on a single graph. In figure 18 the same
conditions are used except regarding velocities which are set to u =−500 m s−1 on the
left, and u = 500 m s−1 on the right. In this case, evaporation is much more intense
resulting in a large cavitation pocket where the gas volume fraction is close to 1.
However, this pocket does not contain pure gas but a mixture at thermodynamic
equilibrium as shown on the mass fraction profile. The various expansion waves now
have comparable velocities, as shown in figure 19.

7.6. Two-dimensional illustrations

The model capabilities are now illustrated for severe test problems involving cavitation
pockets with or without evaporation. The first example is related to supercavitation
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Figure 17. Long time behaviour for the test problem of figure 15. The two slow expansion
waves are clearly visible.
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Figure 18. Numerical solution of the multiphase flow model with mass transfer and strong
velocity difference in the expansion tube. The four expansion waves are clearly visible.
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Figure 19. Schematic (x, t) diagram of the strong symmetric expansion tube.
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Figure 20. Initial configuration of a high-velocity underwater projectile.

around a high-velocity underwater projectile. The second test is related to cavitation
pockets in fuel injector nozzles.

7.6.1. High-velocity underwater projectile

A liquid water flow at velocity 600 m s−1 around an immersed obstacle is considered
as shown in figure 20. Liquid water is initially at atmospheric pressure with a density
of 1150 kg m−3. A weak volume fraction of vapour (αv = 10−3) is initially present in
the water. At the leading edge of the obstacle a strong compression zone is present
and the pressure exceeds 2000 atm. Then the high-velocity liquid flow is subject to
strong rarefaction waves at each geometrical singularity and the pressure decreases.

On the left-hand side of figure 21 the computational results are shown at steady
state without mass transfer. In the absence of mass transfer, the simulation does not
break down as a small volume fraction of gas is present everywhere: the pressure, the
volume fraction and the square speed of sound remain positive. This is a nice feature
of the Kapila et al. (2001) model. This model however needs a specific numerical
scheme as it is non-conservative. An appropriate numerical method is developed in
Petitpas et al. (2007).

On the right-hand side of figure 21, mass transfer is involved. Qualitatively, both
results are very similar: a cavitation wake appears. But the mechanisms responsible
for these cavitation waves are very different. On the left, only mechanical effects are
responsible for bubble growth while on the right mechanical and chemical relaxation
effects are responsible for the pocket growth. This means that results without mass
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Figure 21. High-velocity underwater projectile. On the left, the solution obtained without heat
and mass transfer and on the right the solution with the new thermo-chemical solver. Solutions
are shown at steady state. From top to bottom, contours of: vapour volume fraction, vapour
mass fraction and mixture density. White regions represent from top to bottom respectively:
regions where vapour volume fraction is close to 1, regions where vapour mass fraction
becomes non-negligible (0.1) and regions where mixture density is lower than the density at
infinity.

transfer can be used for a qualitative prediction of the locations where cavitation
appears. For a quantitative prediction, results with mass transfer are more realistic. It
is interesting to note that the maximum vapour mass fraction is not very large (less
than 0.13). The pressure level in the cavitation pocket is quite different: 0.4 atm with
mass transfer, corresponding to the saturation pressure, to be compared with 10−3

atm in the absence of mass transfer.

7.6.2. High-pressure fuel injector

The second situation under study consists of a nozzle where liquid fuel, from a
high-pressure chamber is injected into another chamber at atmospheric pressure as
shown in figure 22. The high-pressure tank (1000 atm) is filled with liquid dodecane
at density 570 kg m−3, corresponding to the temperature T = 640 K (lower than the
critical temperature). As previously a weak volume fraction of vapour (αv = 10−4) is
present in the liquid. The initial conditions consist of an initial discontinuity between
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ρ = 490 kg m–3

p = 1000 bar
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ρ = 2 kg m–3

p = 1 bar

45° 10°

1.2 cm

10 cm

4 cm

Figure 22. Initial configuration of a high-pressure fuel injector.

Figure 23. Flow in a high-pressure fuel injector. Mixture density contours are shown at times
t = 24 μs, t = 60 μs, t = 120 μs and t = 600 μs. On the left, the solution is obtained without heat
and mass transfers and on the right the solution is obtained with the thermo-chemical solver.

liquid dodecane at 1000 bar and 570 kg m−3 and its vapour at atmospheric pressure.
Results are shown in figure 23 at times t = 24 μs, t = 60 μs, t = 120 μs, t = 600 μs.
On the left, computed results without mass transfer are presented, and on the right
those including evaporation. As in the preceding example, the results are qualitatively
similar. But quantitative differences are present regarding flow variables.

It is interesting to note that only slight differences in cavitation pocket size are
present. Two-phase nozzle flows have been used in the past to determine the mass
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transfer rate in non-equilibrium two-phase flow models. The mass transfer rate was
adjusted in order to match the cavitation pocket size. The present computations show
that such a method is inappropriate. Indeed, cavitation pocket size has a too weak
dependence on mass transfer. Mechanical effects alone are able to produce significant
cavitation pockets.

8. Conclusions
A new hyperbolic compressible flow model has been constructed for the compu-

tation of cavitating flows. Relaxation effects are modelled and are able to connect
the non-equilibrium flow model to the mixture Euler model when thermodynamic
equilibrium is reached. The connection occurs through rarefaction waves where mass
transfer occurs. The overall model is able to predict dynamic evaporation waves as
well as interfaces of simple contact separating non-miscible phases.

The model gives a new interpretation of evaporation fronts (Chaves 1984) as
expansion waves in the limit of stiff thermal and chemical relaxation. Numerical
examples show that the model is able to predict complex flow pattern in one and two
dimensions.

The authors are very grateful to anonymous referees for the time spent reading and
analysing the manuscript. Many insightful remarks helped the authors to improve the
quality of the paper. Part of this work was done while the first author was visiting
the Institute for Mathematical Sciences, National University of Singapore in 2007.
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Appendix A. Determination of equilibrium speed of sound
From the definition of mixture internal energy, we have

e =
(
α1ρ1e1 + α2ρ2e2

)
/ρ. (A 1)

When the mixture evolves under thermodynamic equilibrium, the temperature is
linked to the pressure (4.3). Each thermodynamic variable can thus be expressed as a
function of pressure only: ek(p) and ρk(p). Equation (A 1) can be written as

e(ρ, p) =
1

ρ

(
ρ1e1 +

ρ − ρ1

ρ2 − ρ1

(ρ2e2 − ρ1e1)

)
. (A 2)

The mixture speed of sound is defined as

c2 =

(
∂p

∂ρ

)

s

=

p

ρ2
−

(
∂e

∂ρ

)

p(
∂e

∂p

)

ρ

. (A 3)

Differentiating e with respect to ρ and p, we obtain

1

ρc2
eq

=

−dρ1

dp
α1ρ2

(
e2 − e1

ρ2 − ρ1

)
− dρ2

dp
α2ρ1

(
e2 − e1

ρ2 − ρ1

)
+

de1

dp
α1ρ1 +

de2

dp
α2ρ2

p − ρ1ρ2

(
e2 − e1

ρ2 − ρ1

) . (A 4)
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This sound speed is the equilibrium one as (4.3) has been used. We now use the Gibbs
relation for each phase:

∀k = 1, 2:
dek

dp
= T

dsk

dp
+

p

ρ2
k

dρk

dp
. (A 5)

Noting that

for k = 1, 2:
dρk

dp
=

(
∂ρk

∂p

)

sk

+

(
∂ρk

∂sk

)

p

dsk

dp
, (A 6)

we obtain the mixture equilibrium speed of sound formulation (5.20):

1

ρc2
eq

=
α1

ρ1c
2
1

+
α2

ρ2c
2
2

+ T

[
α1ρ1

Cp,v

(
ds1

dp

)2

+
α2ρ2

Cp,l

(
ds2

dp

)2
]
.

Appendix B. Coefficients A, B, A′ and B ′ for thermo-chemical solver
In order to determine heat and mass transfer terms (6.6), the four coefficients

A, B, A′ and B ′ have to be calculated at time tn. Here, we provide expressions for
these coefficients in the context of SG EOS:

A = −(C1 − C2)ρc2

(
Γ1

ρ1c
2
1

− Γ2

ρ2c
2
2

)
+

1

Cv,1γ1α1ρ1

+
1

Cv,2γ2α2ρ2

,

B = −(C1 − C2)ρ

[(
ρc2

ρ1

− Γ h1

)
−

(
ρc2

ρ2

− Γ h2

)]

− ρΓ (h1 − h2)

(
1

Cv,1γ1Γ1ρ1

− 1

Cv,2γ2Γ2ρ2

)
,

A′ = (D1C1 − D2C2)ρc2

(
Γ1

ρ1c
2
1

− Γ2

ρ2c
2
2

)

−
(

1 +
D1

Cv,1γ1

)
1

α1ρ1

−
(

1 +
D2

Cv,2γ2

)
1

α2ρ2

,

B ′ = (D1C1 − D2C2)ρ

[(
ρc2

ρ1

− Γ h1

)
−

(
ρc2

ρ2

− Γ h2

)]

+ ρΓ (h1 − h2)

[(
1 +

D1

Cv,1γ1

)
1

Γ1ρ1

+

(
1 +

D2

Cv,2γ2

)
1

Γ2ρ2

]
,

where the coefficients Ck and Dk are given for each phase k by

Ck =
(1 − γkTk)

γk(p + p∞,k)
, Dk =

qk − gk

Tk

.
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